

<mark>대 회 명</mark> 제 30회 한국반도체학술대회

The 30th Korean Conference on Semiconductors (KCS 2023)

문 의

제 30회 한국반도체학술대회 사무국

전화 042-472-7460 | 팩스 +82-42-472-7459 | 이메일 kcs@ksia.or.kr

🕀 제 30회 한국반도체학술대회

The 30th Korean Conference on Semiconductors

2023년 2월 13일(월)~ 15일(수) | 강원도 하이원리조트(그랜드호텔 컨벤션타워)

2023년 2월 15일(수), 10:45-12:30 Room E (루비 II, 5층)

E. Compound Semiconductors 분과 [WE2-E] Compound Semiconductor II

좌장: 차호영 교수(홍익대학교)

WE2-E-1 10:45-11:15 [초청]	Near-Junction Thermal Management for High-Power Electronics Jungwan Cho <i>School of Mechanical Engineering, Sungkyunkwan University</i>
WE2-E-2 11:15-11:30	Impact of Hf _x Al _{1-x} O Gate Dielectric in the Performance Enhancement of AlGaN/GaN High Electron Mobility Transistors Ju-Won Shin ¹ , Walid Amir ¹ , Surajit Chakraborty ¹ , Atish Bhattacharjee ¹ , Hyo-Joung Kim ¹ , Jae-Moo Kim ² , and Tae-Woo Kim ¹ ¹ School of Electrical, Electronic, and Computer Engineering, University of Ulsan, ² KANC
WE2-E-3 11:30-11:45	Cryogenic Switches based on InGaAs HEMT for Quantum Signal Routing Jaeyong Jeong ¹ , Seong Kwang Kim ¹ , Jongmin Kim ² , Jisung Lee ³ , Joon Pyo Kim ¹ , Bong Ho Kim ¹ , Yoon-Je Suh ¹ , Dae-Myeong Geum ¹ , Seung-Young Park ³ , and SangHyeon Kim ¹ ¹ School of Electrical Engineering, KAIST, ² KANC, ³ KBSI
WE2-E-4 11:45-12:00	In _{0.53} Ga _{0.47} As MOS Interface Optimization Using Post Deposition Annealing and Post Metal Annealing for Photo-FET on Si Wafer Sung-Han Jeon ^{1,2} , Dae-Hwan Ahn ¹ , Jindong Song ¹ , Woo-Young Choi ² , and Jae-Hoon Han ¹ ¹ Center for Opto-Electronic Materials and Devices, KIST, ² Department of Electrical and Electronic Engineering, Yonsei University
WE2-E-5 12:00-12:15	Positive–Bias–Stress Instability Assessment of AlGaN/GaN HEMTs during On- State Condition Walid Amir ¹ , Ju-Won Shin ¹ , Ki-Yong Shin ¹ , Surajit Chakraborty ¹ , Takuya Hoshi ² , Takuya Tsutsumi ² , Hiroki Sugiyama ² , Hideaki Matsuzaki ² , and Tae-Woo Kim ¹ ¹ Department of Electrical, Electronic, and Computer Engineering, University of Ulsan, ² NTT Device Technology Laboratories, NTT Corporation
WE2-E-6 12:15-12:30	Study of Delta-doping Dopants on GaAs Tunnel Junctions and Their Thermal Degradation toward High Efficiency III-V/Si Tandem Cell May Angelu Madarang ^{1,2} , Rafael Jumar Chu ^{1,2} , Yeonhwa Kim ^{1,3} , Eunkyo Ju ¹ , Quang Nhat Dang Lung ^{1,2} , Tae Soo Kim ^{1,4} , Won Jun Choi ¹ , and Daehwan Jung ^{1,2} ¹ Center for Opto-Electronic Materials and Devices, KIST, ² Division of Nano and Information Technology, University of Science and Technology (UST), ³ Department of Materials Science and Engineering, Korea University, ⁴ School of Electrical and Electronic Engineering, Yonsei University

In_{0.53}Ga_{0.47}As MOS Interface Optimization Using Post Deposition Annealing and Post Metal Annealing for Photo-FET on Si Wafer

Sung-Han Jeon^{1,2}, Dae-Hwan Ahn¹, Jindong Song¹, Woo-Young Choi², Jae-Hoon Han^{1*}

1Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology (KIST), 2Department of Electrical and Electronic Engineering, Yonsei University, Korea

SWIR (Short-wave infrared) detectors are widely used in Si Photonics, medical devices, LiDAR sensors, and quantum computing. Especially, In_{0.53}Ga_{0.47}As has been used to detect SWIR wavelengths due to lattice-matched InP wafer and high absorption coefficient. The PIN and APD structures are widely used in the In_{0.53}Ga_{0.47}As photodetector. However, there are challenges in the detection of weak light since PIN does not provide any internal gain and APD suffers from the high operating voltage with a large excess noise [1]. To solve the aforementioned problems, Photo-FETs, which have middle internal gain and low operating voltage, have been researched. Recently, organic and 2D material-based Photo-FET structures have been widely studied, but these materials are unsuitable for the SWIR region due to low mobility [2].

In our previous research, $In_{0.53}Ga_{0.47}As$ based Photo-FET were fabricated by using wafer bonding technology, and optical properties with various device channel lengths were investigated. However, a decrease of I_{ph} was observed at the saturation voltage region. We have assumed that the $In_{0.53}Ga_{0.47}As$ interface and oxide trap led to a decrease of I_{ph} .

In this study, to optimize the optical properties of the Photo-FET, the In_{0.53}Ga_{0.47}As MOS capacitor was fabricated and C-V curves are measured to evaluate the D_{it} and slow trap density. Figure 1 shows In_{0.53}Ga_{0.47}As Photo-FET structure and cross-section. Figure 2 shows the C-V curves with post-deposition annealing (PDA) and post-metal annealing (PMA) conditions at 350 °C for 10min. Figure 3 shows D_{it} at PDA and PMA in 350 °C conditions calculated with the Terman method. This research proposes MOS interface condition optimized D_{it} and slow trap to evaluate the optical property of In_{0.53}Ga_{0.47}As Photo-FET.

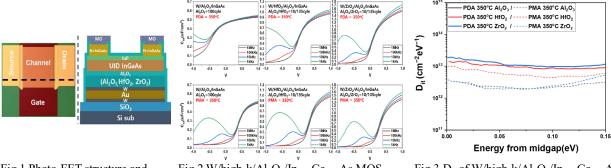


Fig.2 W/high-k/Al₂O₃/In_{0.53}Ga_{0.47}As MOS capacitor with PMA and PDA C-V curve

Fig.3 D_{it} of W/high-k/Al₂O₃/In_{0.53}Ga_{0.47}As MOS capacitor

Acknowledgments This work was supported in part by the Institutional Program (2E31532) funded by KIST, and in part by the NRF (Grant No. NRF-2022M3F3A2A01085469 and NRF-2022R1C1C1007333), and the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2022-0-00208).

References [1] J.J.S. Huang et al., "Temperature dependence study of mesa-type InGaAs/InAlAs avalanche photodiode characteristics," Advances in OptoElectronics 2017. [2] F. H. L. Koppens et al., "Photodetectors based on graphene, other two-dimensional materials and hybrid systems," Nat. Nanotechnol 2014.